

# Introduction to the Argonne Training Program on Extreme-Scale Computing (ATPESC)

#### **Paul Messina**

Director of Science
Argonne Leadership Computing Facility
Argonne National Laboratory



### **Outline**

- Welcome
- A few words about Argonne National Laboratory
- Motivation of the ATPESC
- The curriculum
- Logistics
- Follow-on opportunities

#### Argonne's Mission: To Provide Science-based Solutions to Pressing Global Challenges

### Through discovery and transformational science and engineering...

hard x-ray sciences & sources

Discovery science for energy

Leadership computing and computational ecosystem

Fundamental physics and accelerator capabilities

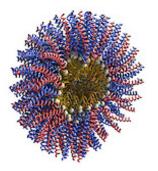
Materials & systems engineering solutions

### and through use-inspired science and engineering

**Energy Storage** 

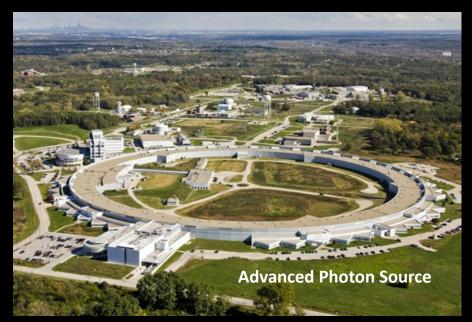
Sustainable Transportation

**Nuclear Energy** 


Environmental Genomics

National Security












### Major Scientific User Facilities













### Motivation for the ATPESC

With the challenges posed by the architecture and software environments of today's most powerful supercomputers, and even greater complexity on the horizon from next-generation and exascale systems, there is a critical need for specialized, indepth training for the computational scientists poised to facilitate breakthrough science and engineering using these amazing resources.

### The DOE Leadership Computing Facility

- Collaborative, multi-lab, DOE/SC initiative ranked top national priority in Facilities for the Future of Science: A Twenty-Year Outlook.
- Mission: Provide the computational and data science resources required to solve the most important scientific & engineering problems in the world.
- Highly competitive user allocation program (INCITE, ALCC).
- Projects receive 100x more hours than at other generally available centers.
- LCF centers partner with users to enable science & engineering breakthroughs (Liaisons, Catalysts).



### Leadership Computing Facility systems

|                                     | Argonne LCF      | Argonne LCF       | Oak Ridge LCF                                        |  |
|-------------------------------------|------------------|-------------------|------------------------------------------------------|--|
| System                              | IBM Blue Gene/P  | IBM Blue Gene/Q   | Cray XK7                                             |  |
| Name                                | Intrepid         | Mira              | Titan                                                |  |
| Compute nodes                       | 40,960           | 49,152            | 18,688                                               |  |
| Node<br>architecture                | PowerPC, 4 cores | PowerPC, 16 cores | AMD Opteron, 16 cores<br>NVIDIA K20x (Kepler)<br>GPU |  |
| Processing Units                    | 163,840 Cores    | 786,432 Cores     | 299,008 x86 Cores +<br>18,688 GPUs                   |  |
| Memory per<br>node,<br>(gigabytes)  | 2                | 16                | 32 + 6                                               |  |
| Peak<br>performance,<br>(petaflops) | 0.557            | 10                | 27                                                   |  |



### 10 Petaflops Blue Bene/Q - Mira

### Mira – BG/Q system

- 49,152 nodes / 786,432 cores
- 786 TB of memory
- Peak flop rate: 10 PetaFLOPs
- 3,145,728 hardware threads

### Vesta (T&D) - BG/Q system

- 2,048 nodes / 32,768 cores
- 32 TB of memory
- Peak flop rate: 420 TF

### Tukey – Nvidia system

- 100 nodes / 1600 x86 cores/ 200 M2070 GPUs
- 6.4 TB x86 memory / 1.2 TB GPU memory
- Peak flop rate: 220 TF

### Storage

- Scratch: 28.8 PB raw capacity, 240 GB/s bw (GPFS)
- Home: 1.8 PB raw capacity, 45 GB/s bw (GPFS)
- Storage upgrade planned in 2015



### **Notional Architecture Trends**

| Systems                    | 2012     | 2017 +1/-0                                                     | 2022 +1/-0                                         |  |
|----------------------------|----------|----------------------------------------------------------------|----------------------------------------------------|--|
| System peak                | 20 Peta  | 100-300 Peta                                                   | 1 Exa                                              |  |
| Power                      | 10 MW    | ~15 MW                                                         | ~20 MW                                             |  |
| Node concurrency           | 12       | O(100)                                                         | O(1k) or 10k                                       |  |
| Total Node Interconnect BW | 3.5 GB/s | 100-200 GB/s<br>10:1 vs memory<br>bandwidth<br>2:1 alternative | 200-400GB/s<br>(1:4 or 1:8 from memory<br>BW)      |  |
| System size (nodes)        | 18,700   | 50,000 or 500,000                                              | O(100,000) or O(1M)                                |  |
| Total concurrency          | 225,000  | O(100,000,000) *O(10)-<br>O(50) to hide latency                | O(billion) * O(10) to<br>O(100) for latency hiding |  |



### High-level view of curriculum

- Computer architectures, mathematical models and numerical algorithms
- Programming methodologies that are effective across a variety of today's supercomputers and that are expected to be applicable to exascale systems
- Multiple approaches on unifying concepts and levels of abstraction that provide migration paths and performance portability among current and future architectures
- Approaches to building community codes for HPC systems, and methodologies and tools relevant for Big Data applications



## Curriculum tracks/sessions and their leaders

- Architectures Pete Beckman
- Programming models with emphasis on scalability and performance scalability – Rusty Lusk and Rajeev Thakur
- Mathematical algorithms and software -- Lois McInnes and Lori Diachin
- Software engineering in scientific computing Katherine Riley and Anshu Dubey
- Performance and debugging tools Kalyan Kumaran and Scott Parker
- Visualization Mike Papka
- Data-intensive computing Rob Ross and Rob Latham
- Community codes— Katherine Riley and Anshu Dubey
- Application case studies— Katherine Riley and Anshu Dubey
- The leaders for each topic will chair their sessions

### Dinner and lunch talks

- Purpose: present additional topics that will probably be relevant to your research at some point in your career
- Eight dinner talks by live presenters
- During some lunches we will show videos of some of the talks that were presented at a recent symposium that celebrated thirty years of parallel computing at Argonne

### **Key people -** plus lecturers (see agenda) and many others too numerous to list

### **Organizing and Program Committee**

- Pete Beckman, ANL
- Richard Coffey, ANL
- Kalyan Kumaran, ANL
- Rusty Lusk, ANL
- Paul Messina, ANL, Chair
- Mike Papka, ANL
- Katherine Riley, ANL
- Rajeev Thakur, ANL

### **Steering Committee**

- David Brown, LBNL
- Lori Diachin, LLNL
- Thom Dunning, University of Illinois
- Geoffrey Fox, Indiana University
- Jim Hack, ORNL
- Marc Snir, ANL
- Jeff Vetter, ORNL

### **Administration and Local Arrangements**

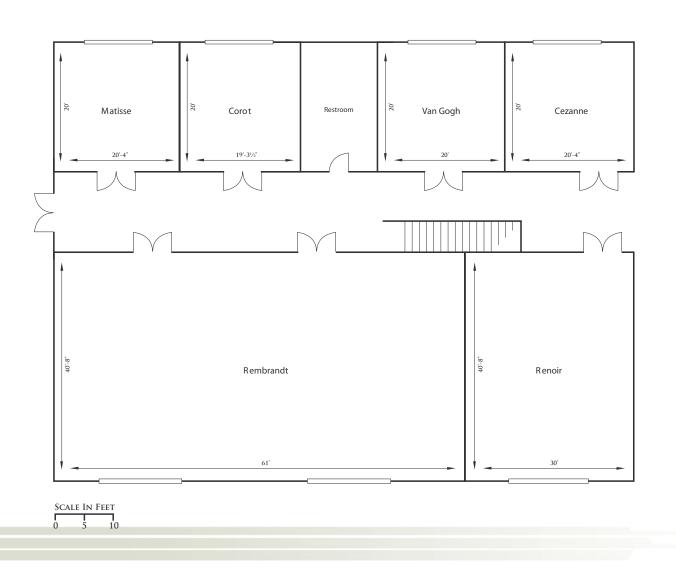
- Cheryl Zidel, ANL
- Ashley Boyle, ANL
- Ginny Doyle, ANL



### Yes, the ATPESC is an intense program

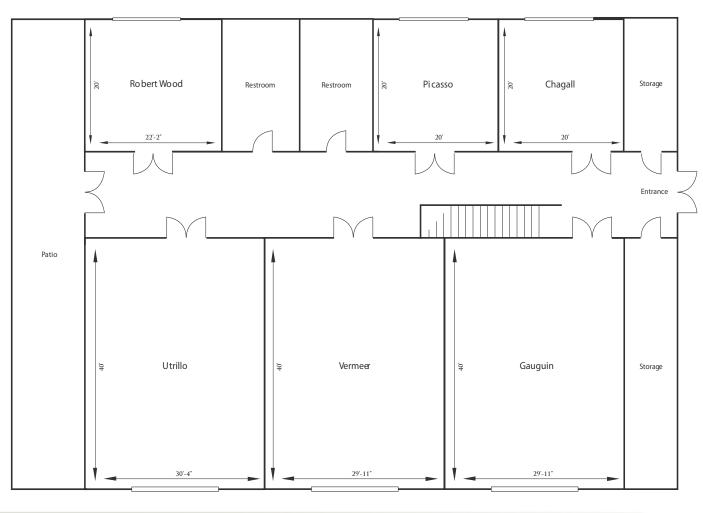
- Many lectures every day, followed by evening hands-on sessions
- Ideally we would cover all topics in more depth but the result would be a six-week program
  - But few people's schedules would allow them to participate
- The scheduling of some talks is not ideal, due to lecturer's schedules
  - E.g., Jim Demmel's and Jack Dongarra's lectures
- Slides will be posted online as soon as available

## Thank you, DOE Office of Advanced Scientific Computing Research (ASCR)


- This training program was made possible by funding from the Research Division of the Advanced Scientific Computing Research program of the Department of Energy's (DOE) Office of Science
- The funding is for three years
  - The training program will be offered again in 2014 and 2015
- Help us improve the training program
  - Track evaluations
  - Overall program evaluation
  - Conversations or emails to any of us

### Logistics (1)

- All lectures and hands-on sessions in Rembrandt room
- All meals in Utrillo room on ground floor
  - Lunch and dinner presentations will be in this room
- Other rooms in ground floor might be used as needed
- Wi-fi SSID in this building is Argonne
- Password is meeting2013


### Diagram of Meeting Rooms: Second Floor

GALLERY HALL (SECOND FLOOR)



### Diagram of meeting rooms: Ground floor

GALLERY HALL (FIRST FLOOR)





### Logistics (2)

- All the lectures will be video recorded
- Recreational activities August 3 and 4: TBD

### Logistics (3) -- Access to computing resources

- This evening after dinner, there will be presentations on how to access and use selected ALCF resources
  - Vesta -- 2-rack Blue Gene/Q (one rack dedicated to ATPESC 24/7 tonight through August 9; both racks available during scheduled time slots if desirable)
  - Tukey -- visualization cluster with NVDIA GPUs)
  - Mira (as time allows)
- Training on using Keeneland and Titan will be later in the program



### Whom to ask for help

- Local arrangements
  - Cheryl Zidel
  - Ashley
  - Ginny
  - (sometimes they will be in Picasso room on ground floor)

### Computing issues

- Lalitha Mantrala
- Robert Scott
- Adam Scovel
- Ray Loy
- Hal Finkel
- Others TBD



### Some helpers may have a badge like this







### After the ATPESC

**Some opportunities** 



### Allocation Programs at the LCFs

|                   | 60% INCITE                                                                                       |                              | 30% ALCC                                                |                            | Director's Discretionary         |                         |
|-------------------|--------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------|----------------------------|----------------------------------|-------------------------|
| Mission           | High-risk, high-payoff science that requires LCF-scale resources*                                |                              | High-risk, high-payoff science aligned with DOE mission |                            | Strategic LCF goals              |                         |
| Call              | 1x/year – (Closes June)                                                                          |                              | 1x/year – (Closes February)                             |                            | Rolling                          |                         |
| Duration          | 1-3 years, yea                                                                                   | rly renewal                  | 1 year                                                  |                            | 3m,6m,1 year                     |                         |
| Typical Size      | 30 - 40<br>projects                                                                              | 50M - 500M<br>core-hours/yr. | 5 - 10 projects                                         | 10M – 300+M core-hours/yr. | 100s of projects                 | .5M – 10M<br>core-hours |
| Review<br>Process | Scientific<br>Peer-Review                                                                        | Computational<br>Readiness   | Scientific<br>Peer-Review                               | Computational<br>Readiness | Strategic impact and feasibility |                         |
| Managed By        | INCITE management committee (ALCF & OLCF)                                                        |                              | DOE Office of Science                                   |                            | LCF management                   |                         |
| Readiness         | High                                                                                             |                              | Medium to High                                          |                            | Low to High                      |                         |
| Availability      | Open to all scientific researchers and organizations  Capability > 131,072 cores (16.7% of Mira) |                              |                                                         |                            |                                  |                         |

### Educational and Job Opportunities @ ALCF

- Research Efforts
  - Computational Science
  - Computer Science
  - Technical Communication
  - Operations Research
- ALCF Director's postdoctoral program (3 years)
- Divisional postdoctoral positions (3 years)
- PhD dissertation support
- Undergraduate and graduate internships
  - And advanced high-school level



# For information on the educational and postdoctoral programs at Argonne National Laboratory

http://www.dep.anl.gov

### Summary

- Thanks in advance to all of you for taking two weeks of your summer to participate in this program
- Questions?